Fei Liu

✓ f4liu@ucsd.edu UC San Diego, La Jolla, CA Personal Site
GotHub
LinkedIn

Research Interests			
	 Computational Modeling: includes multibody mechanics, kineminformed simulation and optimization. Advanced Control: model-based/data-driven/stochastic/predictillems, motion planning, manipulation. Integrated Embedded and Real-Time AI Systems: computer vision mechatronics, sensor fusion, safety-critical design, human-in-the-lonneural networks, cyber-physical systems. 	ve control, inverse prob- n, accelerated computing,	
Appointments	 University of California San Diego (童 UCSD) Postdoctoral Scholar Advanced Robotics and Controls Lab Supervisor: Prof. Michael Yip 	San Diego, US Dec. 2019 – present	
	 ☎ Biorobotics Institute, Scuola Superiore Sant'Anna (SSSA) Senior Research Associate/Postdoc Assistive Robotics Laboratory Supervisor: Prof. Filippo Cavallo 	Pisa, Italy Apr. 2019 – Nov. 2019	
	 m Bioinspired Soft Robotics, Italian Institute of Technology (IIT) Research Associate/Postdoc ROBO Medical Technology Co., Ltd Senior Control Engineer & Project Director 	Pisa, Italy Mar. 2018 – Mar. 2019 Shenzhen, China Oct. 2016 – Feb. 2018	
Education	 Institut National des Sciences Appliquées de Lyon (Institut National des Sciences Appliquées de Lyon (Institut INSA de Lyon) Ph.D. in Robotics Top Engineering school in France (Grande école) Top 51-75 worldwide in Mechnical Engineering based on ARWU Ranking Thesis: Dual-user Haptic Training System Supervisors: Prof. Arnaud Lelevé, Prof. Tanneguy Redarce, Dr. Da 	Lyon, France Sep. 2013 – Sep. 2016 mien Eberard	
	 Institut National des Sciences Appliquées de Lyon (Institut National des Sciences Appliquées de Lyon (Institut INSA de Lyon) Master of Science in Control System and Automation Engineering Thesis: Teleoperation System Using Port-Hamiltonian Approach Supervisor: Prof. Arnaud Lelevé 	Lyon, France Sep. 2012 – Aug. 2013	
	Northwestern Polytechnical University (血 NWPU) Bachelor of Science in Control System and Automation Engineering	Xi'An, China Sep. 2008 – Jul. 2012	

	 Top 6th worldwide in Mechnical Engineering in ARWU Ranking Top 51-75 worldwide in Automation and Control based on ARWU Ranking Speciality: Automation and Inertial Navigation
Publications	I've authored 25 papers, including 14 as the first author, in top-tier venues and conferences for robotics and control systems (RA-L, T-BME, Robotica, ICRA, IROS, EMBC etc). These papers have earned 220+ citations, with an h-index of 9.
	Journal & Book Articles (* shares the first author)
[RA-L'23]	Robotic Manipulation of Deformable Rope-like Objects Using Differentiable Compliant Position-based Dynamics [DOI] Fei Liu [*] , Entong Su [*] , Jingpei Lu, Mingen Li, Michael Yip IEEE Robotics and Automation Letters (RA-L), 2023.
[T-BME'23]	ORRN: An ODE-based Recursive Registration Network for Deformable Respiratory Motion Es- timation with Lung 4DCT Images [DOI] Xiao Liang, Shan Lin, Fei Liu, Dimitri Schreiber, Michael Yip IEEE Transactions on Biomedical Engineering (T-BME), 2023.
[RA-L'21]	Autonomous Robotic Suction to Clear the Surgical Field for Hemostasis Using Image-Based Blood Flow Detection ≧ [DOI] Florian Richter, Shihao Shen, <u>Fei Liu</u> , Jingbin Huang, Emily K. Funk, Ryan K. Orosco, Michael Yip IEEE Robotics and Automation Letters (RA-L), 2023. Best Paper Award Nomination at ICRA 2021
[App.Sci.'20]	Review of Advanced Medical Telerobots Description Fei Liu [*] , Sarmad Mehrdad [*] , Minh Tu Pham, Arnaud Lelevé, S. Farokh Atashzar Applied Sciences, 2020. Invited Article
[Robotica'19]	An Energy-Based Approach for n-dof Passive Dual-user Haptic Training Systems 🕻 [DOI] Fei Liu, Angel Ricardo Licona, Arnaud Lelevé, Damien Eberard, Minh Tu Pham, Tanneguy Redarce <i>Robotica, 2019</i> .
[Hap.Int.'19]	Applications of Haptics in Medicine [DOI] Angel R. Licona, <u>Fei Liu</u> , David Pinzon, Ali Torabi, Pierre Boulanger, Arnaud Lelevé <i>Haptic Interfaces for Accessibility, Health, and Enhanced Quality of Life, 2019.</i>
	Conference Proceedings & Workshops
[ICRA'23]	Image-based Pose Estimation and Shape Reconstruction for Robot Manipulators and Soft, Con- tinuum Robots via Differentiable Rendering [DOI] <u>Fei Liu</u> *, Jingpei Lu*, Michael Yip IEEE International Conference on Robotics and Automation (ICRA), 2023.
[ICRA'23]	Suture Thread Spline Reconstruction from Endoscopic Images for Robotic Surgery with Reliability-driven Keypoint DetectionRendering [DOI] Neelay Joglekar, Fei Liu, Ryan Orosco, Michael Yip IEEE International Conference on Robotics and Automation (ICRA), 2023.
[IROS IPPC'23]	Shape Reconstruction of Soft, Continuum Robots using Differentiable Rendering with Geometrical Shape Primitive ← [LINK] Fei Liu, Michael Yip

IROS Workshop on Integrated Perception, Planning, and Control for Physically and Contextually-Aware Robot Autonomy, 2023.

[TRO'24]	Parameter Identification and Motion Control for Articulated Rigid Body Robots Using Differ-
	Preprints & Submitted
[MESROB'15]	A Dual-user Teleoperation System with Adaptive Authority Adjustment for Haptic Train- ing [[DOI] Fei Liu, Arnaud Lelevé, Damien Eberard, Tanneguy Redarce 4th International Workshop on Medical and Service Robots, Jul. 2015.
[EBMC'15]	A Dual-user Teleoperation System with Online Authority Adjustment for Haptic Train- ing [DOI] Fei Liu, Arnaud Lelevé, Damien Eberard, Tanneguy Redarce 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Aug. 2015.
[IROS'16]	An Energy Based Approach for Passive Dual-user Haptic Training Systems Fei Liu, Arnaud Lelevé, Damien Eberard, Tanneguy Redarce IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Oct. 2016.
[ICMCE'18]	Collaborative Hands-on Training on Haptic Simulators [DOI] Angel Ricardo Licona Rodriguez, <u>Fei Liu</u> , Arnaud Lelevé, Damien Eberard, Minh Tu Pham 7th International Conference on Mechatronics and Control Engineering, Nov. 2018.
[IROS CRS'20]	A 2D Surgical Simulation Framework for Tool-Tissue Interaction 📓 [ARXIV] Yunhai Han, Fei Liu, Michael Yip IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) Workshop on Cognitive Robotic Surgery, 2020.
[IROS'20]	Dynamically Constrained Motion Planning Networks for Non-Holonomic Robots [DOI] Jacob J. Johnson, Linjun Li, <u>Fei Liu</u> , Ahmed H. Qureshi, Michael Yip IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2021.
[ACIRS'21]	Simulated Data Generation Through Algorithmic Force Coefficient Estimation for AI-Based Robotic Projectile Launch Modeling Sajiv Shah, Ayaan Haque, Fei Liu IEEE 6th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS), 2021.
[ICRA'21]	Model-Predictive Control of Blood Suction for Surgical Hemostasis using Differentiable FluidSimulations <a>[DoI] Fei Liu*, Jingbin Huang*, Florian Richter, Michael YipIEEE International Conference on Robotics and Automation (ICRA), 2021.
[ICRA'21]	Real-to-Sim Registration of Deformable Soft-Tissue with Position-Based Dynamics for Surgical Robot Autonomy [DoI] Fei Liu [*] , Zihan Li [*] , Yuhai Han, Jingpei Lu, Florian Richter, Michael Yip IEEE International Conference on Robotics and Automation (ICRA), 2021.
[IROS IPPC'23]	Bridging Real-to-Sim Gaps through Online Material Property Optimization with Perception- Enabled Residual Mapping ← [LINK] Fei Liu [*] , Xiao Liang [*] , Yutong Zhang, Yuelei Li, Michael Yip IROS Workshop on Integrated Perception, Planning, and Control for Physically and Contextually-Aware Robot Autonomy, 2023.

ential Position-based Dynamics 💆 [ARXIV]

	Fei Liu, Mingen Li, Jingpei Lu, Entong Su, Michael C. Yip IEEE Transactions on Robotics (T-RO). In Revision (check for PDF preview)
[ICRA'24]	Achieving Autonomous Cloth Manipulation with Optimal Control via Differentiable Physics- Aware Regularization and Safety Constraints
[ICRA'24]	Real-to-Sim Deformable Object Manipulation: Optimizing Physics Models with Residual Map- pings for Robotic Surgery [3] [ARXIV] Fei Liu [*] , Xiao Liang [*] , Yutong Zhang, Yuelei Li, Shan Lin, Michael Yip IEEE International Conference on Robotics and Automation (ICRA), 2024. Under Submission
[ICRA'24]	SuPerPM: A Large Deformation-Robust Surgical Perception Framework Based on Deep Point Matching Learned from Physical Constrained Simulation Data 🖺 [ARXIV] Shan Lin, Albert Miao, Ali Alabiad, Fei Liu, Kaiyuan Wang, Jingpei Lu, Florian Richter, Michael Yip IEEE International Conference on Robotics and Automation (ICRA), 2024. Under Submission
[ICRA'24]	Robust Surgical Tool Tracking with Pixel-based Probabilities for Projected Geometric Primi- tives [PDF] Christopher D'Ambrosia, Florian Richter, Zih-Yun Chiu, Nikhil Shinde, Fei Liu, Henrik Chris- tensen, Michael C. Yip <i>IEEE International Conference on Robotics and Automation (ICRA), 2024.</i> Under Submission
[T-MECH]	An Underwater Remote Teleoperation Robot Arm with Rolling Diaphragm Actuation and End Effector Force Reconstruction [PDF] Zhaowei Yu, Dimitri A. Schreiber, Fei Liu, Alexander M. Grant, Michael Yip IEEE/ASME Transactions on Mechatronics (T-MECH). Under Patent Application (check for PDF preview)
	In-Preparation (coming soon with results) Continuum Robot Shape Reconstruction and Tracking from Monocular Endoscopic Image Se-
[RAL]	quences Fei Liu, Florian Richter, Michael Yip IEEE Robotics and Automation Letters (RAL). to submit
[T-RO]	SuPer-Robust: A Robust Long-term Deformation Tracking and Reconstruction Framework for Endoscopic Videos Kaiyuan Wang, Shan Lin, Jingpei Lu, <u>Fei Liu</u> , Florian Richter, and Michael Yip <i>IEEE Transactions on Robotics (TRO). to submit</i>
[RAL]	Deformation Tracking-based Online Jacobian Estimation for Deformable Object Manipulation Shan Lin, Jingpei Lu, <u>Fei Liu</u> , Florian Richter, and Michael Yip <i>IEEE Robotics and Automation Letters (RAL). to submit</i>

Dissertations and Technical Papers

[PHD'16]	Dual-user Haptic Training System ♦ [LINK] Fei Liu, PhD Dissertation, INSA de Lyon, 2016.
[Master'13]	Teleoperation System Using Port-Hamiltonian Approach <u>Fei Liu</u> , MSc Thesis, INSA de Lyon, 2013.
[IARC'12]	Northwestern Polytechnical University Team Entry for the AUVSI International Aerial Robotics Competition ♠ [LINK] Fei Liu, Yinan Sang, Jie He, Jie Fan, Ruichao Li, Xiongyi Cui, Haoyu Li, Jie Chen International Aerial Robotics Competition (IARC) Symposium, Aug. 2012. Innovative Design Award
[MCM'11]	Modeling of the Snowboard Course Fei Liu, Haoyu Li, Li Li International Mathematical Contest in Modeling (MCM) Symposium, Apr. 2011 Meritorious Winner Award

Patents

[PCT/US22/22820]	Real-to-Simulation Matching of Deformable Soft Tissue and Oth Dynamics for Robot Control [PATENT] Fei Liu, Michael C. Yip, Florian Richter, 2022.	her Objects with Position-based
[CN215651505U]	Flexible Mechanical Arm and Surgical Equipment [PATENT] Jialin Yang, Qinghao Hu, Jianxiao Chen, <u>Fei Liu</u> , Fei Long, 2021.	
[CN216603056U]	Main Hand Control Unit and Auxiliary Robot for Digestive Trac Jialin Yang, Qinghao Hu, Jianxiao Chen, <u>Fei Liu</u> , Fei Long, Lucher	. . ,
[CN215273291U]	Main Operator and Force Feedback Device [PATENT] Jialin Yang, Qinghao Hu, Jianxiao Chen, <u>Fei Liu</u> , Fei Long, Lucher	n Shen, Liyang Lin, 2021.
[CN114129228A]	Operation Executor [PATENT] Jialin Yang, Qinghao Hu, Jianxiao Chen, <u>Fei Liu</u> , Fei Long, Lucher	n Shen, Liyang Lin, 2021.
[CN209713128U]	A Kind of Flexible Joint Mechanism D [PATENT] Junjie Gao, Fei Liu, Shunzheng Meng, Sihao Zuo, Jialin Yang, 2013	8.
[CN209574762U]	Lifting Operation Instrument Definition [PATENT] Jialin Yang, Xilong Hou, Lijuan Yao, <u>Fei Liu</u> , 2018.	
Research Experiences	Advanced Robotics and Controls Lab, UCSD	Dec. 2019 – present
	 Postdoc Scholar, ARCLab Developing of a unified framework for modeling, simulativity rigid, articulated, and fluid objects using position-based dynatrobotic manipulation (impedance control, trajectory optimity as well as applications in robotic surgery (soft tissue, membre) Employing the adjoint method based on chain-rule and Autitiability for the PBD simulation. Creation of a constrained-based solver and software architect Flex and Warp. 	amics (PBD). Focus areas include zation, rope shape control, etc.), rane, blood, and tools). todiff tools to establish differen-

- Designing closed-loop controller, motion planning and validation using real robots, includes da Vinci Reseach Kit (DVRK), 7-dof Baxter Arm, 7-dof Franka Panda Arm, a catheter robot, a non-holonomic mobile robot, a hydraulic-driven underwater robotic arm, haptic devices.
- Leading the Continuum Robot Project, which involves shape reconstruction through the projection of geometrical primitives (cylinders, circles, etc.), differentiable rendering, and executing visual servoing control.

Biorobotics Institute, Scuola Superiore Sant'Anna

Senior Research Associate/Postdoc, Assistive Robotics Lab

- Conducted Simultaneous Localization and Mapping (SLAM) for a mobile robot with ROS.
- Implemented autonomous vision-based self-initialization approach with aruco markers.
- Executed autonomous navigation with path planning and obstacle avoidance.
- Developed and implemented shared control theory for the mobile robot.
- Designed a PHP/HTML-based web user interface for control.
- Conducted experimental tests with real robots at a hospital in Verona, Italy.

Bioinspired Soft Robotics@SSSA

Mar. 2018 – Apr. 2019 Pisa, Italy

Apr. 2019 - Nov. 2019

Pisa, Italy

Research Associate/Postdoc, Istituto Italiano di Tecnologia

- Implemented modeling and control for the KUKA LWR4+ robotic arm using ROS and Gazebo, including motion control, trajectory planning, and master-slave operations.
- Conducted modeling and control of a flexible continuum surgical tool, involving a static tension-deflection model, Euler-Lagrange dynamics, and port-Hamiltonian-based control.
- Analyzed various continuum structure prototypes, exploring design variations such as notches, single-backbone configurations, and articulated structures.
- Developed a teleoperation framework using haptic devices (Sigma.7).
- Conducted a preliminary study of a simulation platform for flexible surgical tools using SOFA (Simulation Open Framework Architecture).

Senior Control Engineer & Project Director

ROBO Medical Technology Co., Ltd

- Led the development of teleoperation for a single-port abdominal robotics surgical system using haptic devices (PHANTOM Omni, Novint Falcon, Omega.3) and joysticks (Logitech G Extreme 3D, Microsoft Xbox).
- Modeled and controlled a tendon-driven articulated end-effector and 4 DOFs positioning arm (parallel mechanisms), covering kinematics, motion planning, and master-slave control.
- Identified and compensated model-based uncertainties, such as hysteresis and friction.
- Calculated the Remote Center of Motion (RCM) point for the positioning arm.

PHD Thesis: Dual-user Haptic Training System

Advisors: Prof. Tanneguy Redarce, Prof. Arnaud Lelevé, Dr. Damien Eberard Lyon, France

- Researched on control theories and modeling for haptic teleoperation with time delays.
- Proposed shared control frameworks for managing dual-user authority with the analysis of stability and transparency.
- Developed real-time experiments using Matlab/Simulink, ROS, and Chai3D.
- Published several international conference papers and journal papers.

Master Thesis: Cooperative Haptic Hands-on MIS Trainer Internship at Ampère Laboratory

Sep. 2012 - Aug. 2013

INSA de Lyon, France

Sep. 2012 - Sep. 2016

Oct. 2016 - Feb. 2018

Shenzhen, China

• Designed a teleoperation system using a port-Hamiltonian approach.

- Implemented control algorithms with haptic devices (PHANTOM Omni).
- Conducted real-time experiments using Matlab/Simulink.

Undergraduate Thesis

Laboratory Research Assistant

- Implemented image processing and classification algorithms.
- Extraction of image metadata features for retrieving images based on content and context.

Funded Student Project by Chinese Ministry of Education Project Leader

- Implemented statistical and computing algorithms related to data mining (SVM etc).
- Implemented path planning algorithms for a mobile robot (A^{\star} , RRT, RRT*).

Competitions & Awards	DJI RoboMasters Mobile Manipulation Challenge	Aug. 2014
C Tiwards	Team Leader	Shenzhen, China

Dajiang Innovations Technology Co., Ltd (DJI)

- Design of autonomous mobile robot using SLAM and ROS.
- Implemented fast on-board object tracking and recognition algorithms.
- Developed multi-robot coordination and searching algorithms.

International Aerial Robotics Competition (IARC)

Team Leader

- Mathematical modeling of a self-made low-cost laser rangefinder based on geometric calculation for environment mapping.
- Autonomous control of the quadrotor using environment mapping and detection algorithms (wall and window detection using point cloud analysis).
- Awarded Innovative Design.

International Mathematical Contest in Modeling (MCM) Team Leader	,	
Optimal Design of U-shaped Snowboard Course	NPU, Xi'an, China	
 Awarded Meritorious Winner (First Prize Mention). 		
Robocup 3D Simulation Group	Sep. 2010 – Jun. 2012	
Team Leader	NPU, Xi'an, China	
• Designed gait algorithm of simulated NAO (Humanoid) robot.		
• Developed control strategies for simulated soccer competition	under the Linux platform.	
• Awarded Third Prize in China Open 2011.	-	
"Freescale Cup" National Smart Car Design Competition	Dec. 2010 – May. 2011	
Team Leader	NPU, Xi'an, China	

- Design and control of an intelligent car for path following
- Awarded Third Prize in NPU Open 2011.

Sep. 2011 – Jun. 2012 NPU, Xi'an, China

Nov. 2010 - Jun. 2012

NPU, Xi'an, China

Aug. 2012

Peking, China

Academic Journal Reviewer Services • IEEE Transactions on Robotics (T-RO) • IEEE Transactions on Mechatronics (T-MECH) • IEEE Robotics and Automation Letters (RAL) • IEEE Transactions on Medical Robotics and Bionics • The International Journal of Robotics Research (IJRR) Control Engineering Practice Robotica Journal of Mechanisms and Robotics (JMR) **Conference Reviewer** International Conference on Robotics and Automation (ICRA) International Conference on Intelligent Robots and Systems (IROS) • American Control Conference (ACC) • International Conference on Learning Representations (ICLR) • IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control (LHMNC) • IEEE RAS/EMBS Conference on Biomedical Robotics and Biomechatronics (BioRob) Grants CAREER: Contextually Informed Autonomous Robotic Surgery

- Modeling and simulating the deformation of soft tissue alongside interactive control of robotic tools.
- Contribute to the grant writing process, meetings and reports.

EFRI C3 SoRo: Safe Medical Continuum Robots: Sensing, Control and FabricationNational Science Foundation (NSF)Nov. 2019 – Jun. 2023Postdoc Researcher (Grant No. : 1935329)Nov. 2019 – Jun. 2023

- Shape reconstruction of catheter robots using endoscopic images and visual-servoing control.
- Contribute to the meetings and reports.

National Key R&D Program of China: Design and Kinematic Modeling of Modular Variable Stiffness Continuum Flexible Actuator

Ministry of Science and Technology (MOST) of ChinaMar. 2019 – Nov. 2022Sub-project Leader/PI: ROBO Medical Technology Co. Ltd (Grant No. : 2018YFB1307700)

- Modeling and control of a continuum flexible endoscopic submucosal dissection (ESD) robot using curvature-based approaches.
- Contribute to the grant writing process, meetings and reports.

National College Student Innovation and Entrepreneurship Training Program

Chinese Ministry of Education Student Leader (10000 CNY) Nov. 2010 – Jun. 2012

Sep. 2021 - present

Mentoring Experiences

PhD Students

Xiao Liang, CSE, UCSD

8/10

•	Project:	Reconstructio	n of 4D lun	g motionu	using n	eural-ODE i	integration

• Achievement: Published papers at TBME/IROS 2023, and submitted papers to ICRA 2024

Yu Huan, BioRobotics Institute, Scuola Superiore Sant'Anna Mar. 2018 - Mar. 2019

- **Project**: Design and control of flexible miniature surgical tools (continuum robot)
- Achievement: Published papers at IEEE TBME/TMECH

Master Students

Yutong Zhang, CSE, UCSD Jan. 2021 – present • Project: Simulation of position-based dynamics for various objects (rigid, cloth, deformable) and rendering with libIGL/OpenGL • Achievement: Submitted papers to ICRA 2024 Chung-Pang (Ben) Wang, CSE, UCSD Sept. 2023 - present • **Project**: SE(3)-Equivariant mappings for data-efficient learning of robot trajectory Wangyi Liu, ECE, UCSD July 2022 – Aug 2023 • **Project**: SE(3)-Equivariant mappings for data-efficient learning of robot trajectory • Achievement: Currently working on a paper for IEEE RAL Alexander Luke, MAE, UCSD Sep. 2021 – Jun. 2023 • Project: Motion control and calibration of a steerable continuum robotic catheter with clinical trials Achievement: Successfully conducted demos with animal trials Junming Wu, ECE, UCSD Sep. 2021 – Dec. 2022 • Project: Bi-manual close-loop control of dual-arm suturing using physical-based simulation Achievement: Successfully conducted demos on the dVRK robot Haaris Rahman, CSE, UCSD Sep. 2021 - Mar. 2022 • **Project**: Reconstruction of deformable soft tissue using occupancy flow • Achievement: Successfully conducted demos in our PBD simulator Chong He, MAE, UCSD Sep. 2021 – Aug. 2022 • **Project**: Shape reconstruction of catheter robot using monocular images • Achievement: Drafted a paper for IEEE RAL Yunhai Han, MAE, UCSD Jan. 2021 – Jan. 2022 • **Project**: Deformable objects simulation framework using a constraints-based solver • Achievement: Published a paper at ICRA 2021/IROS 2021 Mingen Li, ECE, UCSD Jan. 2021 – Jan. 2022 Project: Simulation and control of articulated robots using position-based dynamics Achievement: Submitted a paper to IEEE TRO Entong Su, ECE, UCSD Jan. 2021 – Jan. 2022 · Project: Simulation and control of rope-like objects using position-based dynamics Achievement: Published a paper at IEEE RAL Harleen Singh, ECE, UCSD Jan. 2020 – Jul. 2021 • Project: Modeling of the continuum catheter robot for motion control Achievement: Successfully conducted demos with live animal trials Zihan Li, ECE, UCSD Jan. 2020 - Nov. 2020 • **Project**: Real-to-sim registration of deformable tissue with correspondance-free SDF • Achievement: Published a paper at ICRA 2021

Undergraduate Students

Yuelei (Tina) Li, Mathematics, UCSD	Apr. 2023 – presen		
• Project: Intrinsic neural mappings from mesh to point cloud for soft tissue tracking			
 Achievement: Submitted a paper to ICRA 2024 			
Neelay Joglekar, ECE, UCSD	Jan. 2021 – preser		
• Project : Modeling dynamical behavior of rope-like objects using surgical thread reconstruction with splines	ng cosserat rod theory, an		
Achievement: Published a paper at ICRA 2023			
Bryan Yuan, ECE, UCSD	Jan. 2021 – May 202		
• Project: Computation of backward gradients for position-based	dynamics constraints		
 Achievement: Integrated into our PBD simulator 			
Nemanja Babic, Research Internship, University of Ottawa & INSA de	201 zvon		
 Project: Simulating haptic systems using CHAI3D 			
• Achievement: Conducted demos with simulations in CHAI3D			
High School Students			
Ayaan Haque, Saratoga High School, California	Jan. 2021 – Jul. 202		
Project: Simulation through algorithmic force coefficient estimated	tion		
• Achievement: Published a paper at IEEE ACIRS 2021			
Sajiv Shah, Saratoga High School, California	Jan. 2021 – Jul. 202		
• Project: Simulation through algorithmic force coefficient estimat	tion		
• Achievement: Published a paper at IEEE ACIRS 2021			

Languages	English: Advanced, Fluent
	Chinese: Native
	French: Beginner A2